An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells.

نویسندگان

  • Anne des Rieux
  • Virginie Fievez
  • Ivan Théate
  • Jan Mast
  • Véronique Préat
  • Yves-Jacques Schneider
چکیده

An alternative in vitro model of human follicle-associated epithelium (FAE) to study nanoparticle transport mechanisms by M cells was developed and characterized. The previous in vitro model of human FAE has been improved by inverting inserts after Caco-2 cell seeding. Raji and M cells were identified only in inverted co-culture cell monolayers by immunohistochemistry, confocal microscopy, and electron microscopy. The M cell conversion rate evaluated by scanning electron microscopy ranged between 15 and 30% of cells. Transport of 200 nm carboxylated polystyrene nanoparticles was higher and more reproducible in the inverted model. Nanoparticle transport was temperature-dependent, not affected by the presence of EGTA or by potassium depletion, but inhibited by EIPA or nystatin, suggesting that it occurs most likely by macropinocytosis. The inverted model appears more physiologic, functional and reproducible than the normally oriented model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helodermin-loaded nanoparticles: characterization and transport across an in vitro model of the follicle-associated epithelium.

M cells represent a potential portal for oral delivery of peptides and proteins due to their high endocytosis abilities. An in vitro model of human FAE (co-cultures) was used to evaluate the influence of M cells on the transport of free and encapsulated helodermin--a model peptide--across the intestinal epithelium. M cells enhanced transport of intact helodermin (18-fold, Papp=3 x 10(-6) cm s(-...

متن کامل

Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium.

An in vitro model of the human follicle associated epithelium (FAE) was characterized and the influence of nanoparticle properties on the transcellular transport across the in vitro model was investigated. The model was established by co-culturing Caco-2 and Raji cells, with Caco-2 cells alone as control. The conversion of Caco-2 cells to follicle associated epithelium (FAE) like cells was moni...

متن کامل

Identification of cell adhesion molecules in the human follicle-associated epithelium that improve nanoparticle uptake into the Peyer's patches.

The aim of this study was to identify cell adhesion molecules that could serve as targets of the human follicle-associated epithelium (FAE) overlying Peyer's patches and to assess nanoparticle uptake levels across this epithelium. We first studied the expression of the mouse M-cell marker beta(1)-integrin and used a model of human FAE derived from intestinal epithelial Caco-2 cells and Raji B-c...

متن کامل

Oral Toxicity and Intestinal Transport Mechanism of Colloidal Gold Nanoparticle-Treated Red Ginseng

(1) Background: Application of nanotechnology or nanomaterials in agricultural food crops has attracted increasing attention with regard to improving crop production, quality, and nutrient utilization. Gold nanoparticles (Au-NPs) have been reported to enhance seed yield, germination rate, and anti-oxidant potential in food crops, raising concerns about their toxicity potential. In this study, w...

متن کامل

Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination.

For oral vaccination, incorporation of antigens into nanoparticles has been shown to protect the antigen from degradation, but may also increase its uptake through the intestinal epithelium via M-cells. The aim of this study was to understand the mechanisms by which oral administration of antigen-loaded nanoparticles induces an immune response and to analyze the effect of the nanoparticle compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2007